Factor Investing

BUSI 722: Data-Driven Finance II

Kerry Back, Rice University

Overview

- Introduction to factors
- SQL Database
- Examples of constructing features
- Sorts

Introduction to factors

- Factor investing at BlackRock
- Factor investing at AQR

Some factors (features)

- Value
- Price to book
- Price to earnings
- Momentum / reversal
 - Last month or week return (short-term reversal)
 - Last six-months or year return excluding most recent month (momentum)
 - Last five-year return excluding most recent year (long-term reversal)

- Volatility
 - Standard deviation
 - Standard deviation of CAPM residual
 - Standard deviation of Fama-French residual
- Volume (liquidity)
- Profitability
 - Return on equity (quarterly or annual)
 - Operating profitability (Revenue COGS SG&A Taxes) / assets
- Asset growth
- Accruals (net income operating cash flow)

- Dividend announcements and yields
- Earnings announcements
- Sentiment (text analysis)
- Short interest
- Corporate insider (director/executive/large shareholder) trades

Some data from Ken French's data library

- Monthly returns of value-weighted portfolios constructed from sorts on characteristics
- Either (i) one characteristic at a time or (ii) size and another characteristic
- One at a time
- Size and another

SQL database for this course

- Annual and quarterly reports, prices, volume
- On Rice server. Must be on campus or on Rice VPN.
- Data is downloaded daily from Nasdaq Data Link.
- Use either pyodbc or pymssql (pymssql is deprecated). For Macs, need to install Microsoft's ODBC Driver. There have been issues with Macs.

Establish a connection

Can always use this code to connect (I hope).

```
In [104]: from sqlalchemy import create_engine
```

```
server = 'fs.rice.edu'
database = 'stocks'
username = 'stocks'
password = '6LAZH1'
driver = 'SQL+Server'
string = f"mssql+pyodbc://{username}:{password}@{server}/{database}"
try:
    conn = create_engine(string + "?driver='SQL+Server'").connect()
except:
    try:
        conn = create_engine(string + "?driver='ODBC+Driver+18+for+SQL+Server
        except:
        import pymssql
        string = f"mssql+pymssql://{username}:{password}@{server}/{database}"
        conn = create_engine(string + "?driver='ODBC+Driver+18+for+SQL+Server
        except:
        import pymssql
        string = f"mssql+pymssql://{username}:{password}@{server}/{database}"
```

Overview of tables in the database

In [105]:	<pre>import pandas as pd</pre>	
	<pre>pd.read_sql("select * from information_schema.tables", con</pre>	1)

Out[105]:		TABLE_CATALOG	TABLE_SCHEMA	TABLE_NAME	TABLE_TYPE
	0	stocks	dbo	sf1	BASE TABLE
	1	stocks	dbo	sep_weekly	BASE TABLE
	2	stocks	dbo	weekly	BASE TABLE
	3	stocks	dbo	today	BASE TABLE
	4	stocks	dbo	ghz	BASE TABLE
	5	stocks	dbo	indicators	BASE TABLE
	6	stocks	dbo	tickers	BASE TABLE

tickers table

tickers has one row for each ticker, with general company information

Out[106]:		permaticker	siccode	lastupdated	firstadded	firstpricedate	lastpricedate	fi
	0	196290	3826	2023-12-20	2014-09- 26	1999-11-18	2024-01-30	1
	1	124392	3334	2023-10-26	2016-11- 01	2016-11-01	2024-01-30	2
	2	122827	6022	2019-07-29	2017-09- 09	1998-09-25	2003-01-28	1

In [106]: tickers = pd.read_sql("select top 3 * from tickers", conn)
tickers

3 rows × 26 columns

In [107]: for col in tickers.columns: print(col)

permaticker siccode lastupdated firstadded firstpricedate lastpricedate firstquarter lastquarter isdelisted ticker name exchange cusips sicsector sicindustry famasector famaindustry sector industry scalemarketcap scalerevenue relatedtickers currency location secfilings companysite

indicators

indicators has one row for each variable in the other tables with definitions

	in	dicat	ors.head()				·	
Out[108]:		tbl	indicator	isfilter	isprimarykey	title	description	unittype
	0	SF1	revenue	N	N	Revenues	[Income Statement] The amount of Revenue recog	currency
	1	SF1	cor	N	N	Cost of Revenue	[Income Statement] The aggregate cost of goods	currency
	2	SF1	sgna	N	N	Selling General and Administrative Expense	[Income Statement] A component of [OpEx] repre	currency
						Research and	Income] [Statement] م	

In [108]: indicators = pd.read_sql("select * from indicators", conn)
indicators.head()

In [109]: indicators.to_excel("indicators.xlsx")

In [110]: for col in indicators.columns: print(col)

tbl
indicator
isfilter
isprimarykey
title
description
unittype

sf1

sf1 has annual and quarterly reports for all NYSE/Nasdaq stocks since 2000

- ARQ = as reported quarterly
- ARY = as reported yearly
- MRQ = modified (includes restatements) quarterly
- MRY = modified (includes restatements) yearly

In [111]:	<pre>sf1 = pd.read_sql("select top 3 * from sf1", conn) sf1</pre>									
Out[111]:		ticker	dimension	calendardate	datekey	reportperiod	lastupdated	ŝ		
	0	MET	ARQ	2011-03-31	2011- 05-10	2011-03-31	2023-11-02	1.11500(
	1	MET	ARQ	2011-06-30	2011- 08-05	2011-06-30	2023-11-02	3.356000		
	2	MET	ARQ	2011-09-30	2011- 11-04	2011-09-30	2023-11-02	6.813000		

3 rows × 111 columns

In [112]: for col in sf1.columns: print(col)

ticker dimension calendardate datekey reportperiod lastupdated accoci assets assetsavg assetsc assetsnc assetturnover bvps capex cashneq cashnequsd cor consolinc currentratio de debt debtc debtnc debtusd deferredrev depamor deposits

 $\langle \rangle$

sep_weekly

sep_weekly has weekly open (opn), high, low, closeadj, closeunad, and average daily volume

In [113]: sep_weekly = pd.read_sql("select top 3 * from sep_weekly", conn)

weekly

weekly has end-of-week enterprise value, enterprise value to ebit, enterprise value to ebitda, marketcap, price to book, price to earnings, and price to sales

In [114]:	pd	<pre>pd.read_sql("select top 3 * from weekly", conn)</pre>								
Out[114]:		ticker	date	lastupdated	ev	evebit	evebitda	marketcap	pb	pe
	0	А	2000- 01-07	2019-03-28	32040.0	47.9	28.9	32040.0	10.0	62.6
	1	А	2000- 01-14	2019-03-28	30678.3	45.9	27.7	30678.3	9.5	59.9
	2	А	2000- 01-21	2019-03-28	31817.5	47.6	28.7	31817.5	9.9	62.1

Examples of constructing features

- Momentum, price-to-book, marketcap, ROE, asset growth
- Tables
 - sep_weekly: closeadj \rightarrow returns and momentum, closeunadj \rightarrow exclude penny stocks
 - weekly: price-to-book and marketcap
 - sf1: assets \rightarrow asset growth, netinc and equity \rightarrow roe
- We will limit the date range to 2010 on for speed.
- Rarely, there are strange data entries two rows for the same ticker/date. We'll keep the last updated row in this case.

sep_weekly

<

>

```
In [115]: sep_weekly = pd.read_sql(
               ......
              select date, ticker, closeadj, closeunadj, lastupdated from sep_weekly
              where date >= '2010-01-01'
              order by ticker, date, lastupdated
               .....
                و
              conn,
           sep_weekly = sep_weekly.groupby(["ticker", "date"]).last()
           sep_weekly = sep_weekly.drop(columns=["lastupdated"])
           ret = sep_weekly.groupby("ticker", group_keys=False).closeadj.pct_change()
          ret.name = "ret"
           price = sep weekly.closeunadj
          price.name = "price"
```

Momentum

- What people have found in equities and other markets (see "Value and Momentum Everywhere" by Asness and other AQR people) is
 - long-term reversals (5 year returns reverse somewhat)
 - medium-term momentum (1 year or 6 month returns continue)
 - short-term reversals (1 month or 1 week returns reverse)
- The conventional definition of momentum in academic work (including the Asness paper) is last year's return excluding the most recent month
 - In other words, the return over the first 11 of the previous 12 months.

Calculating momentum

- Each week, we want to look back one year and compound the returns, excluding the most recent month.
- Count the weeks in the prior year as 1, 2, ..., 52.
- We want to calculate $(1+r_1)\cdots(1+r_{48})$.
- We can do this as

$$rac{(1+r_1)\cdots(1+r_{52})}{(1+r_{49})\cdots(1+r_{52})}$$

• In other words,

 $\frac{1 + \text{last year's return}}{1 + \text{last month's return}}$

```
In [116]: ret_annual = sep_weekly.groupby("ticker", group_keys=False).closeadj.pct_chan;
ret_monthly = sep_weekly.groupby("ticker", group_keys=False).closeadj.pct_chan
mom = (1 + ret_annual) / (1 + ret_monthly) - 1
mom.name = "mom"
```

Value

- Value means cheap relative to quality. Value investing has a very long tradition.
- Conventional measures are price-to-earnings (PE) and price-to-book (PB).
- Low PE or low PB stocks are value stocks. High PE or PB stocks are "growth stocks" or "glamour stocks."
- We'll get PB, but PE is also worth exploring (also price-to-sales, price-to-clicks, ...)

weekly


```
In [117]: weekly = pd.read_sql(
    """
    select date, ticker, pb, marketcap, lastupdated from weekly
    where date>='2010-01-01'
    order by ticker, date, lastupdated
    """,
        conn,
    )
    weekly = weekly.groupby(["ticker", "date"]).last()
    weekly = weekly.drop(columns=["lastupdated"])
    pb = weekly.pb
    pb.name = "pb"
    marketcap = weekly.marketcap
    marketcap.name = "marketcap"
```

 $\langle \rangle$

Asset growth and ROE

- Fast growing firms in terms of % change in assets have historically been poor investments.
- Get total assets from sf1 (dimension=ARY) and compute % change year to year.
- High ROE firms have historically been good investments. Define ROE as net income / lagged book equity.

Combining data of different frequencies

- sf1 data is quarterly or annual. date is date of posting on SEC website.
- Other data is weekly = Fridays.
- Convert sf1 dates to Fridays.

sf1

<

>

```
In [118]: sf1 = pd.read_sql(
               11.11.11
               select datekey as date, ticker, assets, netinc, equity, lastupdated from
               where datekey>='2010-01-01' and dimension='ARY' and assets>0 and equity>0
               order by ticker, datekey, lastupdated
               .....
                 ر
               conn,
           sf1 = sf1.groupby(["ticker", "date"]).last()
           sf1 = sf1.drop(columns=["lastupdated"])
          # change dates to Fridays
          from datetime import timedelta
           sf1 = sf1.reset index()
           sf1.date =sf1.date.map(
               lambda x: x + timedelta(4 - x.weekday())
           sf1 = sf1.set_index(["ticker", "date"])
           sf1 = sf1[~sf1.index.duplicated()]
           assets = sfl.assets
           assets.name = "assets"
           netinc = sf1.netinc
           netinc.name = "netinc"
           equity = sf1.equity
           equity.name = "equity"
```

Sorts

Returns of portfolios based on sorts

- Merge a feature or multiple features with returns.
- Shift returns backwards.
 - Return on each Friday is return ending on close of that Friday.
 - Features are also known by Friday close.
 - We want to use features to predict future returns, so shift returns backwards, so the following week's return is aligned with features.
- Exclude penny stocks (e.g., price >= 5).
- Sort each week into groups based on feature(s) e.g., deciles.
- Compute average (following week) return in each decile. This is the return of the portfolio that is equally weighted (same \$ investment in each stock).

Sorting on momentum

>

```
In [119]:
          df = pd.concat((ret, mom, price), axis=1)
          df["ret"] = df.groupby("ticker", group keys=False).ret.shift(-1)
          df = df[df.price >= 5]
           df = df.dropna()
           df["mom10"] = df.groupby("date", group keys=False).mom.apply(
              lambda x: pd.qcut(x, 10, labels=range(1, 11))
          mom10 = df.groupby(
              ["date", "mom10"],
              observed=True,
              group_keys=True
           ).ret.mean().unstack()
          mom10.head()
                            1
                                      2
                                                 3
                                                           4
                                                                      5
                                                                                 6
           mom10
Out[119]:
              date
             2010-
                     0.016544
                               0.014900
                                          0.008000
                                                    0.008447
                                                               0.005864
                                                                          0.005382
                                                                                    0.0080
             12-31
             2011-
                    -0.002317
                              -0.002727
                                         -0.001495 -0.005026 -0.005653
                                                                         -0.005736 -0.0017
             01-07
             2011-
                               0.018445
                     0.016414
                                          0.015778
                                                    0.014730
                                                               0.012619
                                                                          0.011439
                                                                                    0.0124
             01-14
             2011-
                    -0.023235 -0.016761
                                         -0.016063
                                                   -0.008631
                                                              -0.012379
                                                                         -0.011164 -0.0153
```

In [120]: (100 * 52 * mom10.mean()).round(2)

Out[120]: mom10

3.83 1 2 8.82 3 10.68 11.91 4 13.25 5 6 12.76 7 11.34 8 11.34 9 13.91 10 14.47 dtype: float64

Does size matter?

Repeat for small caps, defined as not in the top 1,000 by marketcap.

```
In [121]: df = pd.concat((ret, mom, price, marketcap), axis=1)
                                                    df["ret"] = df.groupby("ticker", group keys=False).ret.shift(-1)
                                                    df = df[df.price >= 5]
                                                    df["rnk"] = df.groupby("date", group_keys=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.rank(ascending=False).marketcap.ran
                                                    df = df[df.rnk>1000]
                                                    df = df.dropna()
                                                     df["mom10"] = df.groupby("date", group_keys=False).mom.apply(
                                                                        lambda x: pd.qcut(x, 10, labels=range(1, 11))
                                                    mom10 = df.groupby(
                                                                        ["date", "mom10"],
                                                                        observed=True,
                                                                        group keys=True
                                                     ).ret.mean().unstack()
                                                      (100 * 52 * mom10.mean()).round(2)
```

```
Out[121]:
          mom10
                   2.02
            1
                  7.71
            2
            3
                  10.56
                  10.37
            4
            5
                  12.59
                  12.99
            6
                  11.68
            7
            8
                  10.90
            9
                  13.44
                  1/ 58
            10
```

< >

Exercise

- Sort into deciles based on marketcap (using all stocks, not just small caps).
- Compute equally weighted portfolio returns.

Double sort on momentum and price-to-book

- Sort into quintiles on mom and pb separately
- Intersect the quintiles to get 25 groups each week
- Compute equally weighted portfolio returns

```
In [122]: df = pd.concat((ret, mom, pb, price), axis=1)
          df["ret"] = df.groupby("ticker", group keys=False).ret.shift(-1)
          df = df[df.price >= 5]
          df = df.dropna()
          df["mom5"] = df.groupby("date", group_keys=False).mom.apply(
              lambda x: pd.qcut(x, 5, labels=range(1, 6))
          df["pb5"] = df.groupby("date", group_keys=False).pb.apply(
              lambda x: pd.qcut(x, 5, labels=range(1, 6))
          mom5 pb5 = df.groupby(
              ["date", "mom5", "pb5"],
              observed=True,
              group keys=True
          ).ret.mean().unstack(level=["pb5", "mom5"])
          (100 * 52 * mom5_pb5.mean()).round(2).unstack()
                           2
                                  3
                                               5
          mom5
                     1
                                        4
Out[122]:
             pb5
               1 4.20
                       13.23
                              16.01
                                    13.85 15.04
               2 7.47 10.68
                             10.72
                                    10.71 12.76
               3 8.19 10.27 11.47 11.12 14.55
               4 7.42 11.34 13.33 11.56 11.82
```

 $\langle \rangle$

Exercise

Intersect quintile sorts on momentum and marketcap and compute mean portfolio returns.

Sorting on ROE

- Compute roe = netinc / lagged equity
- Merge with returns and prices
- Forward fill roe into weeks. Each week will show the most recently reported roe. roe will change only once per year when a new annual report comes out.
- roe will be missing until a firm has filed two annual reports. So we start the data in 2012 (2 years after 2010).

```
In [123]: equity = equity.groupby("ticker", group_keys=False).shift()
          roe = netinc / equity
           roe.name = "roe"
          df = pd.concat((ret, roe, price), axis=1)
          df["ret"] = df.groupby("ticker", group keys=False).ret.shift(-1)
          ## forward fill
          df["roe"] = df.groupby("ticker", group keys=False).roe.ffill()
          df = df[df.price >= 5]
          df = df[df.index.get level values("date").astype(str) >= "2012-01-01"]
          df = df.dropna()
          df["roe10"] = df.groupby("date", group_keys=False).roe.apply(
              lambda x: pd.qcut(x, 10, labels=range(1, 11))
           roe10 = df.groupby(
              ["date", "roe10"],
              observed=True,
              group_keys=True
           ).ret.mean().unstack()
           (100 * 52 * roe10.mean()).round(2)
Out[123]:
          roe10
```

1 6.78 2 10.69 $\langle \rangle$

Sorting on asset growth

- % change in assets
- Forward fill and subset to date > = 2012-01-01 as for roe

```
In [124]: assetgr = assets.groupby("ticker", group_keys=False).pct_change()
           assetgr.name = "assetgr"
          df = pd.concat((ret, assetgr, price), axis=1)
          df["ret"] = df.groupby("ticker", group_keys=False).ret.shift(-1)
          ## forward fill
          df["assetgr"] = df.groupby("ticker", group_keys=False).assetgr.ffill()
          df = df[df.price >= 5]
          df = df[df.index.get level values("date").astype(str) >= "2012-01-01"]
          df = df.dropna()
          df["assetgr10"] = df.groupby("date", group keys=False).assetgr.apply(
              lambda x: pd.qcut(x, 10, labels=range(1, 11))
           assetgr10 = df.groupby(
              ["date", "assetgr10"],
              observed=True,
              group keys=True
           ).ret.mean().unstack()
           (100 * 52 * assetgr10.mean()).round(2)
Out[124]: assetgr10
                 11.65
           1
```

12.88

11.04

2 3

Λ