
Factor Investing
BUSI 722: Data-Driven Finance II
Kerry Back, Rice University

Overview
Introduction to factors
SQL Database
Examples of constructing features
Sorts

Introduction to factors

Factor investing at BlackRock

Factor investing at AQR

https://www.blackrock.com/us/individual/investment-ideas/what-is-factor-investing
https://www.aqr.com/Learning-Center/Systematic-Equities/Systematic-Equities-A-Closer-Look?gclid=Cj0KCQiA_8OPBhDtARIsAKQu0gZS3uj9A0fdCN5eB_P-uUfY0VWr2uY9MW503bgPnO7DbQeVr2_WlxkaAlwhEALw_wcB

Some factors (features)
Value

Price to book
Price to earnings

Momentum / reversal
Last month or week return (short-term reversal)
Last six-months or year return excluding most recent month (momentum)
Last five-year return excluding most recent year (long-term reversal)

Volatility
Standard deviation
Standard deviation of CAPM residual
Standard deviation of Fama-French residual

Volume (liquidity)
Profitability

Return on equity (quarterly or annual)
Operating profitability (Revenue - COGS - SG&A - Taxes) / assets

Asset growth
Accruals (net income - operating cash flow)

Dividend announcements and yields
Earnings announcements
Sentiment (text analysis)
Short interest
Corporate insider (director/executive/large shareholder) trades

Some data from Ken French's data library
Monthly returns of value-weighted portfolios constructed from sorts on
characteristics
Either (i) one characteristic at a time or (ii) size and another characteristic
One at a time
Size and another

https://learn-investments.rice-business.org/factor-investing/quintiles
https://learn-investments.rice-business.org/factor-investing/two-way-sorts

SQL database for this course

Annual and quarterly reports, prices, volume
On Rice server. Must be on campus or on .
Data is downloaded daily from Nasdaq Data Link.
Use either pyodbc or pymssql (pymssql is deprecated). For Macs, need to install

. There have been issues with Macs.

Rice VPN

Microsoft's ODBC Driver

https://kb.rice.edu/page.php?id=82263
https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/install-microsoft-odbc-driver-sql-server-macos?view=sql-server-ver16

Establish a connection
Can always use this code to connect (I hope).

In [104]: from sqlalchemy import create_engine

server = 'fs.rice.edu'
database = 'stocks'
username = 'stocks'
password = '6LAZH1'
driver = 'SQL+Server'
string = f"mssql+pyodbc://{username}:{password}@{server}/{database}"
try:
 conn = create_engine(string + "?driver='SQL+Server'").connect()
except:
 try:
 conn = create_engine(string + "?driver='ODBC+Driver+18+for+SQL+Server
 except:
 import pymssql
 string = f"mssql+pymssql://{username}:{password}@{server}/{database}"
 conn = create_engine(string).connect()

Overview of tables in the database

TABLE_CATALOG TABLE_SCHEMA TABLE_NAME TABLE_TYPE

0 stocks dbo sf1 BASE TABLE

1 stocks dbo sep_weekly BASE TABLE

2 stocks dbo weekly BASE TABLE

3 stocks dbo today BASE TABLE

4 stocks dbo ghz BASE TABLE

5 stocks dbo indicators BASE TABLE

6 stocks dbo tickers BASE TABLE

In [105]: import pandas as pd
pd.read_sql("select * from information_schema.tables", conn)

Out[105]:

tickers table
tickers has one row for each ticker, with general company information

permaticker siccode lastupdated firstadded firstpricedate lastpricedate fir

0 196290 3826 2023-12-20 2014-09-
26 1999-11-18 2024-01-30 1

1 124392 3334 2023-10-26 2016-11-
01 2016-11-01 2024-01-30 2

2 122827 6022 2019-07-29 2017-09-
09 1998-09-25 2003-01-28 1

3 rows × 26 columns

In [106]: tickers = pd.read_sql("select top 3 * from tickers", conn)
tickers

Out[106]:

In [107]: for col in tickers.columns: print(col)

permaticker
siccode
lastupdated
firstadded
firstpricedate
lastpricedate
firstquarter
lastquarter
isdelisted
ticker
name
exchange
cusips
sicsector
sicindustry
famasector
famaindustry
sector
industry
scalemarketcap
scalerevenue
relatedtickers
currency
location
secfilings
companysite

indicators
indicators has one row for each variable in the other tables with definitions

tbl indicator isfilter isprimarykey title description unittype

0 SF1 revenue N N Revenues

[Income
Statement]

The amount
of Revenue

recog...

currency

1 SF1 cor N N Cost of
Revenue

[Income
Statement]

The
aggregate

cost of
goods...

currency

2 SF1 sgna N N

Selling General
and

Administrative
Expense

[Income
Statement]

A
component

of [OpEx]
repre...

currency

Research and

[Income
Statement]

A

In [108]: indicators = pd.read_sql("select * from indicators", conn)
indicators.head()

Out[108]:

In [109]: indicators.to_excel("indicators.xlsx")

In [110]: for col in indicators.columns: print(col)

tbl
indicator
isfilter
isprimarykey
title
description
unittype

sf1
sf1 has annual and quarterly reports for all NYSE/Nasdaq stocks since 2000

ARQ = as reported quarterly
ARY = as reported yearly
MRQ = modified (includes restatements) quarterly
MRY = modified (includes restatements) yearly

ticker dimension calendardate datekey reportperiod lastupdated a

0 MET ARQ 2011-03-31 2011-
05-10 2011-03-31 2023-11-02 1.115000

1 MET ARQ 2011-06-30 2011-
08-05 2011-06-30 2023-11-02 3.356000

2 MET ARQ 2011-09-30 2011-
11-04 2011-09-30 2023-11-02 6.813000

3 rows × 111 columns

In [111]: sf1 = pd.read_sql("select top 3 * from sf1", conn)
sf1

Out[111]:

In [112]: for col in sf1.columns: print(col)

ticker
dimension
calendardate
datekey
reportperiod
lastupdated
accoci
assets
assetsavg
assetsc
assetsnc
assetturnover
bvps
capex
cashneq
cashnequsd
cor
consolinc
currentratio
de
debt
debtc
debtnc
debtusd
deferredrev
depamor
deposits

sep_weekly
sep_weekly has weekly open (opn), high, low, closeadj, closeunad, and average daily
volume

In [113]: sep_weekly = pd.read_sql("select top 3 * from sep_weekly", conn)

weekly
weekly has end-of-week enterprise value, enterprise value to ebit, enterprise value to
ebitda, marketcap, price to book, price to earnings, and price to sales

ticker date lastupdated ev evebit evebitda marketcap pb pe

0 A 2000-
01-07 2019-03-28 32040.0 47.9 28.9 32040.0 10.0 62.6

1 A 2000-
01-14 2019-03-28 30678.3 45.9 27.7 30678.3 9.5 59.9

2 A 2000-
01-21 2019-03-28 31817.5 47.6 28.7 31817.5 9.9 62.1

In [114]: pd.read_sql("select top 3 * from weekly", conn)

Out[114]:

Examples of constructing features

Momentum, price-to-book, marketcap, ROE, asset growth
Tables

sep_weekly: closeadj returns and momentum, closeunadj exclude
penny stocks
weekly: price-to-book and marketcap
sf1: assets asset growth, netinc and equity roe

We will limit the date range to 2010 on for speed.
Rarely, there are strange data entries - two rows for the same ticker/date. We'll
keep the last updated row in this case.

→ →

→ →

sep_weekly

In [115]: sep_weekly = pd.read_sql(
 """
 select date, ticker, closeadj, closeunadj, lastupdated from sep_weekly
 where date >= '2010-01-01'
 order by ticker, date, lastupdated
 """,
 conn,
)
sep_weekly = sep_weekly.groupby(["ticker", "date"]).last()
sep_weekly = sep_weekly.drop(columns=["lastupdated"])

ret = sep_weekly.groupby("ticker", group_keys=False).closeadj.pct_change()
ret.name = "ret"

price = sep_weekly.closeunadj
price.name = "price"

Momentum
What people have found in equities and other markets (see "Value and Momentum
Everywhere" by Asness and other AQR people) is

long-term reversals (5 year returns reverse somewhat)
medium-term momentum (1 year or 6 month returns continue)
short-term reversals (1 month or 1 week returns reverse)

The conventional definition of momentum in academic work (including the Asness
paper) is last year's return excluding the most recent month

In other words, the return over the first 11 of the previous 12 months.

Calculating momentum
Each week, we want to look back one year and compound the returns, excluding
the most recent month.
Count the weeks in the prior year as 1, 2, ..., 52.
We want to calculate .
We can do this as

In other words,

(1 + r1) ⋯ (1 + r48)

(1 + r1) ⋯ (1 + r52)

(1 + r49) ⋯ (1 + r52)

1 + last year's return

1 + last month's return

In [116]: ret_annual = sep_weekly.groupby("ticker", group_keys=False).closeadj.pct_chang
ret_monthly = sep_weekly.groupby("ticker", group_keys=False).closeadj.pct_chan
mom = (1 + ret_annual) / (1 + ret_monthly) - 1
mom.name = "mom"

Value
Value means cheap relative to quality. Value investing has a very long tradition.
Conventional measures are price-to-earnings (PE) and price-to-book (PB).
Low PE or low PB stocks are value stocks. High PE or PB stocks are "growth stocks"
or "glamour stocks."
We'll get PB, but PE is also worth exploring (also price-to-sales, price-to-clicks, ...)

weekly

In [117]: weekly = pd.read_sql(
 """
 select date, ticker, pb, marketcap, lastupdated from weekly
 where date>='2010-01-01'
 order by ticker, date, lastupdated
 """,
 conn,
)
weekly = weekly.groupby(["ticker", "date"]).last()
weekly = weekly.drop(columns=["lastupdated"])

pb = weekly.pb
pb.name = "pb"
marketcap = weekly.marketcap
marketcap.name = "marketcap"

Asset growth and ROE
Fast growing firms in terms of % change in assets have historically been poor
investments.
Get total assets from sf1 (dimension=ARY) and compute % change year to year.
High ROE firms have historically been good investments. Define ROE as net income
/ lagged book equity.

Combining data of di�erent frequencies
sf1 data is quarterly or annual. date is date of posting on SEC website.
Other data is weekly = Fridays.
Convert sf1 dates to Fridays.

sf1

In [118]: sf1 = pd.read_sql(
 """
 select datekey as date, ticker, assets, netinc, equity, lastupdated from
 where datekey>='2010-01-01' and dimension='ARY' and assets>0 and equity>0
 order by ticker, datekey, lastupdated
 """,
 conn,
)
sf1 = sf1.groupby(["ticker", "date"]).last()
sf1 = sf1.drop(columns=["lastupdated"])

change dates to Fridays
from datetime import timedelta
sf1 = sf1.reset_index()
sf1.date =sf1.date.map(
 lambda x: x + timedelta(4 - x.weekday())
)
sf1 = sf1.set_index(["ticker", "date"])
sf1 = sf1[~sf1.index.duplicated()]

assets = sf1.assets
assets.name = "assets"
netinc = sf1.netinc
netinc.name = "netinc"
equity = sf1.equity
equity.name = "equity"

Sorts

Returns of portfolios based on sorts
Merge a feature or multiple features with returns.
Shift returns backwards.

Return on each Friday is return ending on close of that Friday.
Features are also known by Friday close.
We want to use features to predict future returns, so shift returns
backwards, so the following week's return is aligned with features.

Exclude penny stocks (e.g., price >= 5).
Sort each week into groups based on feature(s) - e.g., deciles.
Compute average (following week) return in each decile. This is the return of the
portfolio that is equally weighted (same $ investment in each stock).

Sorting on momentum

mom10 1 2 3 4 5 6

date

2010-
12-31 0.016544 0.014900 0.008000 0.008447 0.005864 0.005382 0.0080

2011-
01-07 -0.002317 -0.002727 -0.001495 -0.005026 -0.005653 -0.005736 -0.0017

2011-
01-14 0.016414 0.018445 0.015778 0.014730 0.012619 0.011439 0.0124

2011-
01 21 -0.023235 -0.016761 -0.016063 -0.008631 -0.012379 -0.011164 -0.0153

In [119]: df = pd.concat((ret, mom, price), axis=1)
df["ret"] = df.groupby("ticker", group_keys=False).ret.shift(-1)
df = df[df.price >= 5]
df = df.dropna()

df["mom10"] = df.groupby("date", group_keys=False).mom.apply(
 lambda x: pd.qcut(x, 10, labels=range(1, 11))
)
mom10 = df.groupby(
 ["date", "mom10"],
 observed=True,
 group_keys=True
).ret.mean().unstack()

mom10.head()

Out[119]:

In [120]: (100 * 52 * mom10.mean()).round(2)

Out[120]: mom10
1 3.83
2 8.82
3 10.68
4 11.91
5 13.25
6 12.76
7 11.34
8 11.34
9 13.91
10 14.47
dtype: float64

Does size matter?
Repeat for small caps, defined as not in the top 1,000 by marketcap.

In [121]: df = pd.concat((ret, mom, price, marketcap), axis=1)
df["ret"] = df.groupby("ticker", group_keys=False).ret.shift(-1)
df = df[df.price >= 5]
df["rnk"] = df.groupby("date", group_keys=False).marketcap.rank(ascending=Fals
df = df[df.rnk>1000]
df = df.dropna()

df["mom10"] = df.groupby("date", group_keys=False).mom.apply(
 lambda x: pd.qcut(x, 10, labels=range(1, 11))
)
mom10 = df.groupby(
 ["date", "mom10"],
 observed=True,
 group_keys=True
).ret.mean().unstack()

(100 * 52 * mom10.mean()).round(2)

Out[121]: mom10
1 2.02
2 7.71
3 10.56
4 10.37
5 12.59
6 12.99
7 11.68
8 10.90
9 13.44
10 14 58

Exercise
Sort into deciles based on marketcap (using all stocks, not just small caps).
Compute equally weighted portfolio returns.

Double sort on momentum and price-to-book
Sort into quintiles on mom and pb separately
Intersect the quintiles to get 25 groups each week
Compute equally weighted portfolio returns

mom5 1 2 3 4 5

pb5

1 4.20 13.23 16.01 13.85 15.04

2 7.47 10.68 10.72 10.71 12.76

3 8.19 10.27 11.47 11.12 14.55

4 7.42 11.34 13.33 11.56 11.82

In [122]: df = pd.concat((ret, mom, pb, price), axis=1)
df["ret"] = df.groupby("ticker", group_keys=False).ret.shift(-1)
df = df[df.price >= 5]
df = df.dropna()

df["mom5"] = df.groupby("date", group_keys=False).mom.apply(
 lambda x: pd.qcut(x, 5, labels=range(1, 6))
)
df["pb5"] = df.groupby("date", group_keys=False).pb.apply(
 lambda x: pd.qcut(x, 5, labels=range(1, 6))
)

mom5_pb5 = df.groupby(
 ["date", "mom5", "pb5"],
 observed=True,
 group_keys=True
).ret.mean().unstack(level=["pb5", "mom5"])

(100 * 52 * mom5_pb5.mean()).round(2).unstack()

Out[122]:

Exercise
Intersect quintile sorts on momentum and marketcap and compute mean portfolio
returns.

Sorting on ROE
Compute roe = netinc / lagged equity
Merge with returns and prices
Forward fill roe into weeks. Each week will show the most recently reported roe. roe
will change only once per year when a new annual report comes out.
roe will be missing until a firm has filed two annual reports. So we start the data in
2012 (2 years after 2010).

In [123]: equity = equity.groupby("ticker", group_keys=False).shift()
roe = netinc / equity
roe.name = "roe"

df = pd.concat((ret, roe, price), axis=1)
df["ret"] = df.groupby("ticker", group_keys=False).ret.shift(-1)

forward fill
df["roe"] = df.groupby("ticker", group_keys=False).roe.ffill()

df = df[df.price >= 5]
df = df[df.index.get_level_values("date").astype(str) >= "2012-01-01"]
df = df.dropna()

df["roe10"] = df.groupby("date", group_keys=False).roe.apply(
 lambda x: pd.qcut(x, 10, labels=range(1, 11))
)
roe10 = df.groupby(
 ["date", "roe10"],
 observed=True,
 group_keys=True
).ret.mean().unstack()

(100 * 52 * roe10.mean()).round(2)

Out[123]: roe10
1 6.78
2 10.69
3 11 34

Sorting on asset growth
% change in assets
Forward fill and subset to date >= 2012-01-01 as for roe

In [124]: assetgr = assets.groupby("ticker", group_keys=False).pct_change()
assetgr.name = "assetgr"

df = pd.concat((ret, assetgr, price), axis=1)
df["ret"] = df.groupby("ticker", group_keys=False).ret.shift(-1)

forward fill
df["assetgr"] = df.groupby("ticker", group_keys=False).assetgr.ffill()

df = df[df.price >= 5]
df = df[df.index.get_level_values("date").astype(str) >= "2012-01-01"]
df = df.dropna()

df["assetgr10"] = df.groupby("date", group_keys=False).assetgr.apply(
 lambda x: pd.qcut(x, 10, labels=range(1, 11))
)
assetgr10 = df.groupby(
 ["date", "assetgr10"],
 observed=True,
 group_keys=True
).ret.mean().unstack()

(100 * 52 * assetgr10.mean()).round(2)

Out[124]: assetgr10
1 11.65
2 12.88
3 11.04
4 12 78

