Factor Investing

BUSI 722: Data-Driven Finance |l
Kerry Back, Rice University



Overview

¢ Introduction to factors
e SQL Database
e Examples of constructing features

e Sorts



Introduction to factors



e Factor investing at BlackRock

e Factor investing at AQR


https://www.blackrock.com/us/individual/investment-ideas/what-is-factor-investing
https://www.aqr.com/Learning-Center/Systematic-Equities/Systematic-Equities-A-Closer-Look?gclid=Cj0KCQiA_8OPBhDtARIsAKQu0gZS3uj9A0fdCN5eB_P-uUfY0VWr2uY9MW503bgPnO7DbQeVr2_WlxkaAlwhEALw_wcB

Some factors (features)

e Value
= Price to book
= Price to earnings
e Momentum / reversal
® Last month or week return (short-term reversal)
= Last six-months or year return excluding most recent month (momentum)

= Last five-year return excluding most recent year (long-term reversal)



Volatility
= Standard deviation
= Standard deviation of CAPM residual
= Standard deviation of Fama-French residual
Volume (liquidity)
Profitability
= Return on equity (quarterly or annual)
= Operating profitability (Revenue - COGS - SG&A - Taxes) / assets
Asset growth

Accruals (net income - operating cash flow)



Dividend announcements and yields

Earnings announcements

Sentiment (text analysis)

Short interest

Corporate insider (director/executive/large shareholder) trades



Some data from Ken French's data library

e Monthly returns of value-weighted portfolios constructed from sorts on
characteristics

e Either (i) one characteristic at a time or (ii) size and another characteristic

e Oneatatime

e Size and another


https://learn-investments.rice-business.org/factor-investing/quintiles
https://learn-investments.rice-business.org/factor-investing/two-way-sorts

SQL database for this course



Annual and quarterly reports, prices, volume

On Rice server. Must be on campus or on Rice VPN.

Data is downloaded daily from Nasdaq Data Link.

Use either pyodbc or pymssql (pymssql is deprecated). For Macs, need to install
Microsoft's ODBC Driver. There have been issues with Macs.


https://kb.rice.edu/page.php?id=82263
https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/install-microsoft-odbc-driver-sql-server-macos?view=sql-server-ver16

Establish a connection

Can always use this code to connect (I hope).



from sqlalchemy import create_engine

server = 'fs.rice.edu'
database = 'stocks'
username = 'stocks'
password = '6LAZH1’
driver = 'SQL+Server'’
string = f"mssql+pyodbc://{username}:{password}@{server}/{database}"
try:
conn = create_engine(string + "?driver='SQL+Server'").connect()
except:

try:
conn = create_engine(string + "?driver='0ODBC+Driver+18+for+SQL+Server
except:
import pymssql
string = f"mssql+pymssqgl://{username}:{password}@{server}/{database}"
conn = create_engine(string).connect()



Overview of tables in the database



import pandas as pd
pd.read sql("select * from information_schema.tables", conn)

TABLE_CATALOG TABLE_SCHEMA TABLE_NAME TABLE_TYPE

0 stocks dbo sf1 ~ BASE TABLE
1 stocks dbo sep_weekly  BASE TABLE
2 stocks dbo weekly  BASE TABLE
3 stocks dbo today  BASE TABLE
4 stocks dbo ghz  BASE TABLE
5 stocks dbo indicators  BASE TABLE
6 stocks dbo tickers  BASE TABLE



tickers table

tickers has one row for each ticker, with general company information



tickers = pd.read sql("select top 3 * from tickers", conn)

tickers

permaticker siccode lastupdated firstadded firstpricedate lastpricedate fi
0 196290 3826  2023-12-20 2014'052 1999-11-18  2024-01-30 1
1 124392 3334 2023-10-26 201 6_131_ 2016-11-01 2024-01-30 2
2 122827 6022 2019-07-29 201 7_035; 1998-09-25 2003-01-28 1

3 rows x 26 columns



for col in tickers.columns:

permaticker
siccode
lastupdated
firstadded
firstpricedate
lastpricedate
firstquarter
lastquarter
isdelisted
ticker

name

exchange
cusips
sicsector
sicindustry
famasector
famaindustry
sector
industry
scalemarketcap
scalerevenue
relatedtickers
currency
location
secfilings
companysite

print(col)



indicators

indicators has one row for each variable in the other tables with definitions



indicators = pd.read sql("select * from indicators", conn)

indicators.head()

tbl indicator isfilter isprimarykey title

description unittype

0 SF1 revenue N N Revenues

[Income
Statement]
The amount
of Revenue
recog...

currency

Cost of

1 SF1 cor N N
Revenue

[Income
Statement]
The
aggregate
cost of
goods...

currency

Selling General
and
Administrative
Expense

2 SF1 sgna N

[Income
Statement]

component
of [OpEXx]
repre...

currency

Research and

[Income

Statement]
N



indicators.to_excel("indicators.xlsx")



for col in indicators.columns: print(col)

tbl
indicator
isfilter
isprimarykey
title
description
unittype



sfl

sf1 has annual and quarterly reports for all NYSE/Nasdaq stocks since 2000

e ARQ = as reported quarterly

e ARY = as reported yearly

e MRQ = modified (includes restatements) quarterly
e MRY = modified (includes restatements) yearly



sfl = pd.read_sql("select top 3 * from sfl", conn)

sfl
ticker dimension calendardate datekey reportperiod lastupdated c
0 MET ARQ 2011-03-31 é?j:o 2011-03-31  2023-11-02 1.11500(
2011-
1 MET ARQ 2011-06-30 08-05 2011-06-30 2023-11-02 3.35600(
2011-
2 MET ARQ 2011-09-30 11-04 2011-09-30 2023-11-02 6.81300(

3 rows x 111 columns



for col in sfl.columns:

ticker
dimension
calendardate
datekey
reportperiod
lastupdated
accoci
assets
assetsavg
assetsc
assetsnc
assetturnover
bvps

capex
cashneq
cashnequsd
cor
consolinc
currentratio
de

debt

debtc

debtnc
debtusd
deferredrev
depamor
deposits

print(col)



sep_weekly

sep_weekly has weekly open (opn), high, low, closead], closeunad, and average daily
volume



sep_weekly = pd.read_sql("select top 3 * from sep _weekly", conn)



weekly

weekly has end-of-week enterprise value, enterprise value to ebit, enterprise value to
ebitda, marketcap, price to book, price to earnings, and price to sales



pd.read sql("select top 3 * from weekly", conn)

ticker date Ilastupdated ev evebit evebitda marketcap pb pe

0 A 33?87 2019-03-28 32040.0 47.9 28.9 32040.0 10.0 62.6
2000-

1 A 01-14 2019-03-28 30678.3 459 27.7 306783 9.5 599
2000-

2 A 2019-03-28 31817.5 47.6 28.7 318175 9.9 62.1

01-21



Examples of constructing features



Momentum, price-to-book, marketcap, ROE, asset growth
Tables
= sep_weekly: closeadj — returns and momentum, closeunadj — exclude
penny stocks
m weekly: price-to-book and marketcap
= sfl: assets — asset growth, netinc and equity — roe
We will limit the date range to 2010 on for speed.
Rarely, there are strange data entries - two rows for the same ticker/date. We'll

keep the last updated row in this case.



sep_weekly



sep_weekly = pd.read_sql(
select date, ticker, closeadj, closeunadj, lastupdated from sep weekly
where date >= '2010-01-01'
order by ticker, date, lastupdated

non
J

conn,

)

sep_weekly = sep weekly.groupby(["ticker", "date"]).last()
sep_weekly = sep weekly.drop(columns=["lastupdated"])

ret = sep_weekly.groupby("ticker", group keys=False).closeadj.pct change()

ret.name = "ret"”

price = sep_weekly.closeunadj
price.name = "price"



Momentum

e What people have found in equities and other markets (see "Value and Momentum
Everywhere" by Asness and other AQR people) is
= [ong-term reversals (5 year returns reverse somewhat)
= medium-term momentum (1 year or 6 month returns continue)
» short-term reversals (1 month or 1 week returns reverse)
e The conventional definition of momentum in academic work (including the Asness
paper) is last year's return excluding the most recent month
= |n other words, the return over the first 11 of the previous 12 months.



Calculating momentum

e Each week, we want to look back one year and compound the returns, excluding
the most recent month.

e Count the weeks in the prioryearas 1, 2, ..., 52.

e We want to calculate (1 + 1) -+ (1 + rgg).

e We can do this as

(L471)--- (14 75)
(1 +ra9) -+ (14 7r52)

e |n other words,

1 + last year’s return
1 4 last month’s return




ret_annual = sep_weekly.groupby("ticker", group_ keys=False).closeadj.pct_chan
ret_monthly = sep weekly.groupby("ticker", group keys=False).closeadj.pct_cha
mom = (1 + ret_annual) / (1 + ret_monthly) - 1

mom.name = mom



Value

e Value means cheap relative to quality. Value investing has a very long tradition.

e Conventional measures are price-to-earnings (PE) and price-to-book (PB).

e Low PE or low PB stocks are value stocks. High PE or PB stocks are "growth stocks"
or "glamour stocks."

e We'll get PB, but PE is also worth exploring (also price-to-sales, price-to-clicks, ...)



weekly



weekly = pd.read sql(
select date, ticker, pb, marketcap, lastupdated from weekly
where date>='2010-01-01'
order by ticker, date, lastupdated

non
J

conn,
)

weekly = weekly.groupby(["ticker", "date"]).last()
weekly = weekly.drop(columns=["lastupdated"])

pb = weekly.pb
pb.name = "pb"
marketcap = weekly.marketcap
marketcap.name = "marketcap"



Asset growth and ROE

e Fast growing firms in terms of % change in assets have historically been poor

investments.
e Get total assets from sf1 (dimension=ARY) and compute % change year to year.

e High ROE firms have historically been good investments. Define ROE as net income

/ lagged book equity.



Combining data of different frequencies

e sf1 data is quarterly or annual. date is date of posting on SEC website.
e Other data is weekly = Fridays.
e Convert sf1 dates to Fridays.



sfl



sfl = pd.read_sql(
select datekey as date, ticker, assets, netinc, equity, lastupdated from
where datekey>='2010-01-01' and dimension='ARY' and assets>@ and equity>0
order by ticker, datekey, lastupdated

non
J

conn,
)

sfl = sfl.groupby(["ticker", "date"]).last()
sfl = sfl.drop(columns=["lastupdated"])

# change dates to Fridays
from datetime import timedelta
sfl = sfl.reset _index()
sfl.date =sfl.date.map(
lambda x: x + timedelta(4 - x.weekday())

)
sfl = sfl.set_index(["ticker", "date"])
sfl = sfl[~sfl.index.duplicated()]

assets = sfl.assets

assets.name = "assets"”
netinc = sfl.netinc
netinc.name = "netinc"

equity = sfl.equity
equity.name = "equity"



Sorts



Returns of portfolios based on sorts

e Merge a feature or multiple features with returns.

Shift returns backwards.

= Return on each Friday is return ending on close of that Friday.

m Features are also known by Friday close.

= We want to use features to predict future returns, so shift returns
backwards, so the following week's return is aligned with features.

Exclude penny stocks (e.g., price >=5).

Sort each week into groups based on feature(s) - e.g., deciles.

Compute average (following week) return in each decile. This is the return of the
portfolio that is equally weighted (same $ investment in each stock).



Sorting on momentum



df = pd.concat((ret, mom, price), axis=1)
df["ret"] = df.groupby("ticker", group keys=False).ret.shift(-1)

df
df

df[ "moml0"] = df.groupby("date"”, group keys=False).mom.apply(
lambda x: pd.qcut(x, 10, labels=range(1, 11))

)

momlO =

df.groupby (

df[df.price >= 5]
df.dropna()

["date"”, "momlo"],

observed=True,
group_keys=True

).ret.mean().unstack()

mom10.head()

mom10 1 2 3 4 5 6

date

2010-

12-31 0.016544 0.014900 0.008000 0.008447 0.005864 0.005382 0.0080
2011-

01-07 -0.002317 -0.002727 -0.001495 -0.005026 -0.005653 -0.005736 -0.0017
2011-

01-14 0.016414 0.018445 0.015778 0.014730 0.012619 0.011439 0.0124
2011-

T -0023235 -0016761 -0016063 -0008631 -0012379 -0011164 -00153



(100 * 52 * moml@.mean()).round(2)

moml10

1 3.83
2 8.82
3 10.68
4 11.91
5 13.25
6 12.76
7 11.34
8 11.34
9 13.91
10 14.47

dtype: floate4



Does size matter?

Repeat for small caps, defined as not in the top 1,000 by marketcap.



df = pd.concat((ret, mom, price, marketcap), axis=1)

df["ret"] = df.groupby("ticker", group keys=False).ret.shift(-1)

df = df[df.price >= 5]

df["rnk"] = df.groupby("date", group_keys=False).marketcap.rank(ascending=Fal
df = df[df.rnk>1000]

df = df.dropna()

df[ "moml0"] = df.groupby("date", group keys=False).mom.apply(
lambda x: pd.qcut(x, 10, labels=range(1, 11))
)

moml@ = df.groupby(
["date"”, "momlo"],
observed=True,
group_keys=True

).ret.mean().unstack()

(1060 * 52 * moml@.mean()).round(2)

moml10

10.56
10.37
12.59
12.99
11.68
10.90
13.44

= O 0ONOUT A~ WNR



Exercise

e Sort into deciles based on marketcap (using all stocks, not just small caps).
e Compute equally weighted portfolio returns.



Double sort on momentum and price-to-book

e Sort into quintiles on mom and pb separately
e Intersect the quintiles to get 25 groups each week

e Compute equally weighted portfolio returns



df = pd.concat((ret, mom, pb, price), axis=1)

df["ret"] = df.groupby("ticker", group keys=False).ret.shift(-1)
df = df[df.price >= 5]

df = df.dropna()

df[ "mom5"] = df.groupby(“date"”, group keys=False).mom.apply(
lambda x: pd.qcut(x, 5, labels=range(1, 6))
)

df["pb5"] = df.groupby("date", group keys=False).pb.apply(
lambda x: pd.qcut(x, 5, labels=range(1, 6))
)

mom5_pb5 = df.groupby(

["date", "mom5", "pb5"],

observed=True,

group_keys=True
).ret.mean().unstack(level=["pb5", "mom5"])

(1060 * 52 * mom5_pb5.mean()).round(2).unstack()

mom5 1 2 3 4 5

pb5

420 1323 16.01 13.85 15.04

747 1068 10.72 10.71 12.76

1
2
3 819 1027 1147 1112 1455
4 742 1134 1333 1156 11.82



Exercise

Intersect quintile sorts on momentum and marketcap and compute mean portfolio
returns.



Sorting on ROE

e Compute roe = netinc / lagged equity

e Merge with returns and prices

e Forward fill roe into weeks. Each week will show the most recently reported roe. roe
will change only once per year when a new annual report comes out.

e roe will be missing until a firm has filed two annual reports. So we start the data in
2012 (2 years after 2010).



equity = equity.groupby("ticker", group keys=False).shift()
roe = netinc / equity

roe.name = roe

df = pd.concat((ret, roe, price), axis=1)
df["ret"] = df.groupby("ticker", group keys=False).ret.shift(-1)

## forward fill
df["roe"] = df.groupby("ticker", group_keys=False).roe.ffill()

df
df
df

df[df.price >= 5]
df[df.index.get level values("date").astype(str) >= "2012-01-01"]
df.dropna()

df["roeld"] = df.groupby("date", group_keys=False).roe.apply(
lambda x: pd.qcut(x, 10, labels=range(1, 11))
)
roeld = df.groupby(
["date", "roel@"],
observed=True,
group keys=True
).ret.mean().unstack()

(160 * 52 * proel@.mean()).round(2)

roelo
1 6.78
2 10.69

I} 11 A



Sorting on asset growth

* % change in assets
e Forward fill and subset to date >= 2012-01-01 as for roe



assetgr = assets.groupby(“ticker", group keys=False).pct change()
assetgr.name = "assetgr"

df = pd.concat((ret, assetgr, price), axis=1)
df["ret"] = df.groupby("ticker", group keys=False).ret.shift(-1)

## forward fill
df["assetgr"] = df.groupby("ticker", group_keys=False).assetgr.ffill()

df = df[df.price >= 5]
df = df[df.index.get level values("date").astype(str) >= "2012-01-01"]
df = df.dropna()

df["assetgrle"] = df.groupby("date", group keys=False).assetgr.apply(
lambda x: pd.qcut(x, 10, labels=range(1, 11))
)
assetgrlo = df.groupby(
["date", "assetgrlo"],
observed=True,
group keys=True
).ret.mean().unstack()

(100 * 52 * assetgril®.mean()).round(2)

assetgrilo
1 11.65
12.88

2
3 11.04
n 19 I7Q



